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Abstract—The proliferation of Multi-access Edge Computing
(MEC) paradigm has created a challenging multi-user multi-
server multi-access edge computing competitive environment,
which brings the problem of data offloading decision-making to
the forefront of research. In this paper, we address this issue while
jointly studying the impact of the user behavioral characteristics
and the MEC servers pricing policies on determining the optimal
user data offloading strategies. Prospect Theory is exploited
to reflect the user satisfaction and subjectivity from the data
offloading, while the MEC servers’ probability of failure owing
to the potential over-exploitation by the users, is modeled via the
theory of Tragedy of the Commons. A multi-leader multi-follower
Stackelberg game is formulated among the MEC servers (leaders)
and the users (followers), to determine the servers’ optimal
pricing policies and the users’ optimal data offloading strategies.
The users’ data offloading decision-making is formulated as a
non-cooperative game among them and a Nash Equilibrium is
determined, while the MEC servers’ optimal computing service
prices are obtained either through a semi-autonomous game-
theoretic approach, or through a fully-autonomous reinforce-
ment learning-based approach. The performance evaluation and
demonstration of the superiority of the proposed framework
against other benchmarking alternatives is achieved via modeling
and simulation.

Index Terms—Edge Computing, Prospect Theory, Game The-
ory, Reinforcement Learning, Network Economics.

I. INTRODUCTION

THE proliferation of mobile devices, such as smart phones,
wearable devices, Internet of Things (IoT) sensor nodes,

renders the explosive growth of data and induces the emer-
gence of computation-intensive and latency-critical applica-
tions, such as virtual and augmented reality, online gaming,
surveillance, and others. Towards supporting those resource-
hungry applications, Multi-access Edge Computing (MEC) is
envisioned as a promising computing paradigm [1]. In such
a setting, the users are able to offload their computation-
intensive tasks to resource-rich infrastructures, i.e., MEC
servers, which are usually co-located with macro base sta-
tion (MBS) or Unmanned Aerial Vehicles (UAVs). Thus, the
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development of optimal data offloading policies have recently
received significant attention from industry and academia [2].

In parallel, the behavioral and economic modeling of the
users’ data offloading schemes, while accounting for the
users behavioral decision-making characteristics and the MEC
servers’ computing service pricing policy, though of high
practical importance, is still at an infant stage of study due to
the inherent complexity and multi-dimensional nature of the
problem [3]. In this paper, we aim at exactly addressing this
issue, by jointly studying the interplay of the users behavioral
characteristics and the MEC servers pricing policies, as well as
their impact on determining the optimal users data offloading
strategies. The key objective is to simultaneously maximize
the users’ perceived service satisfaction and the MEC servers’
profit. The introduced novel behavioral and economic model-
ing is performed based on the principles of Prospect Theory
and Network Economics, while the users’ and MEC servers’
distributed decision-making is facilitated by game-theoretic
and reinforcement learning-based approaches.

A. Related Work

Significant research efforts have been lately devoted to
the investigation of the problem of multi-user and multi-
server data offloading in MEC environments, under various
settings. In [4], the authors introduce a multi-variable cen-
tralized minimization problem of the users’ energy cost and
experienced latency by jointly determining the optimal users’
data offloading strategies, users’ scheduling, and resource
allocation. In [5], the authors focus their study on small cell
networks, where each small cell’s access point is equipped
with a MEC server. In particular, the authors determine
the users’ optimal data offloading strategies in a distributed
manner via a game-theoretic approach based on the theory
of potential games, while also addressing the minimization
problem of the users’ energy consumption and service delay.
The data offloading problem in vehicular networks is studied
in [6], where the MEC servers reside at the road side units.
A combination of convex optimization and a game-theoretic
approach is introduced to optimize the system wide profit of
both the vehicles and the network operator via determining
the optimal communication channel allocation, data offloading,
and task scheduling at the MEC servers. A similar approach
is introduced in [7] enabling the patients’ medical nodes to
offload data to MEC servers.

Apart from the game-theoretic approaches, reinforcement
learning-based techniques have also been devised in the lit-
erature to address the data offloading problem [8]. In [9],
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a budged-limited multi-armed bandit problem is formulated
in order to enable the users to select the MEC server that
minimizes their latency and energy consumption, as well as
the corresponding amount of offloaded data. A similar problem
formulation is introduced in [10] with application on vehicular
networks. Specifically, the authors consider the vehicles’ mo-
bility, the MEC servers’ heterogeneous computation resources,
and the vehicles diverse computation demand in the designed
multi-armed bandit learning algorithm. Moreover, an ϵ-greedy
non-stationary multi-armed bandit-based scheme for online
data offloading is introduced in [11] targeting at the mini-
mization of the users’ energy consumption and latency, and the
MEC servers’ computation resource usage optimization. Also,
a fog-enabled federated learning framework is introduced in
[12] to enable the distributed learning for supporting delay-
sensitive applications in resource-constrained IoT systems.
Moreover, Stackelberg games have been widely used to model
the economic-based interaction between two entities in a
hierarchical architecture [13], [14]. In [15], a Stackelberg
game is formulated among the MEC server and the wireless
body area network users in order to derive a joint cost and
energy efficient task offloading mechanism. A novel layered
optimization approach is proposed in [16] to minimize the
users’ overall delay by jointly optimizing the users’ offloaded
tasks and their transmission time.

On the other hand, rather limited research effort has been
devoted to the problem of optimal computing service pricing
from the MEC servers’ side. In [17], several types of pricing
policies, such as multi-dimensional pricing, penalty pricing,
and discount pricing, have been proposed to study the different
number of virtual machines that a cloudlet can accommodate.
Aiming at minimizing the users’ cost, while jointly maximiz-
ing the edge cloud’s profit, a two-side game is introduced in
[18] and [19] to determine the optimal MEC servers’ price and
the users’ data offloading strategies. In [20], a static pricing-
based approach is proposed to guide the users’ cooperation
with the MEC servers to conclude to a stable operational
point. A dynamic pricing mechanism is devised in [21] to
minimize the overall MEC system’s cost, while guaranteeing
the satisfaction of the users’ Quality of Service (QoS).

It should be noted that all the aforementioned research
works consider the users as rational decision-makers aiming
at maximizing their perceived utility, while interacting with
the MEC servers. However, in a realistic edge computing
environment, the users typically demonstrate a risk-aware
decision-making behavior, where the risk primarily stems
from the scarcity due to the potential over-exploitation of
the computation resources available to the MEC servers.
Prospect Theory has been traditionally used in the literature
to capture the users’ risk-aware behavior as compared to the
Expected Utility Theory [22]. Towards capturing the users’
risk-aware decision-making, Prospect Theory has also been
recently adopted in MEC environments [23]. However, these
research attempts have been realized under the assumption that
all the users weigh the MEC servers’ probability of failure to
serve their computing requests in exactly the same manner.
This problem has been studied in ground-based MEC systems
[3] or UAV-assisted MEC systems [24], while accounting

for different imposed communication constraints or static
pricing models [25]. Nevertheless, in these research works
the joint consideration of the users to MEC servers optimal
association and the MEC servers’ optimal price decision
regarding their offered computing services to the users is
not treated. The latter problem, along with the adoption of a
weighted probability that captures the distorted perception of
the probability spectrum proposed by Prospect Theory within
the MEC environment, is part of the novelty of our work.

Prospect Theory has been also combined with the theory
of the Tragedy of the Commons [26] to capture the failure
of the Common Pool Resources (CPR), e.g., MEC servers,
to serve the users due to their over-exploitation [27]. In
general, the principles of Prospect Theory and the Tragedy
of the Commons have already been applied in several other
research fields, such as dynamic spectrum management [28],
[29], load balancing in smart grid systems [30], anti-jamming
communications in cognitive systems [31], fog computing
security [32], and network security [33]. In [34], Prospect
Theory is combined with blockchain to determine the users’
optimal data offloading towards jointly maximizing the utilities
of both the miner devices and the MEC server providers. Also,
in [24], a UAV-assisted MEC system is examined, and the
users’ optimal data offloading is determined based on a game-
theoretic approach, while accounting for the risk of the MEC
servers’ failure due to over-exploitation.

B. Contributions & Outline

In this paper we introduce a novel dynamic behavior and
price-aware edge computing model to determine the users’ op-
timal data offloading strategies and the MEC servers’ optimal
computing service pricing. One key novelty of our introduced
model and approach is that the aforementioned objective is
achieved while accounting for the users’ risk-aware decision-
making due to the potential MEC servers over-exploitation.
Even though Prospect Theory has been recently used to
capture the usage risk-aware behavior in MEC systems, very
little effort has been devoted to the problem of quantifying the
sources and levels of risks in users’ decision-making. In this
paper, towards achieving the latter goal, we jointly examine
the principles of Tragedy of the Commons along with the
users’ probability weighting phenomenon to provide a more
realistic and holistic approach regarding the users’ risk-aware
decision-making process. The key contributions and novelties
that differentiate our paper from the rest of the literature, are
summarized as follows:

• A multi-user multi-server multi-access edge computing
environment is considered. The MEC servers’ probability
of failure due to over-exploitation by the users is captured
via the theory of the Tragedy of the Commons. In contrast
to the existing literature, in this work we account for
the probability weighting phenomenon, where the users
tend to overestimate the likelihood of events with low
probability of failure and underweight outcomes with
high probability of failure.

• To account for the users’ risk-aware decision- making
and behavior, their satisfaction from the data offloading
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and processing is captured by appropriately designed
prospect-theoretic utility functions. Moreover the MEC
servers’ profit by serving the users’ computation demand
is designed as a function of the MEC servers’ computing
service pricing.

• The association problem between users and MEC servers
is jointly treated with the data offloading problem, which
comes in contrast to existing alternative approaches in
literature, where the server selection and data offloading
processes are performed in a disjoint and uncorrelated
manner. To achieve this, a multi-leader multi-follower
Stackelberg game is formulated among the MEC servers
(leaders) and the users (followers) to determine the MEC
servers’ optimal computing service pricing policies and
the users’ optimal data offloading strategies. The goal of
the users is to maximize their expected prospect-theoretic
utility, while accounting for the servers’ pricing policies
and their probability to fail while serving the users due to
potential over-exploitation of their computing resources.
The users’ data offloading decision-making is formulated
as a non-cooperative game among them and a Nash
Equilibrium point is determined.

• The MEC servers’ optimal computing service pricing
policies are obtained following two alternative decision-
making mechanisms, that present different benefits and
tradeoffs. The first one introduces a semi-autonomous
game-theoretic approach, while the second one provides
for a fully-autonomous reinforcement learning-based ap-
proach in order to tackle the common problem of utility-
specificity in game-theoretic approaches.

• A detailed numerical analysis and evaluation is realized
via modeling and simulation, to quantify the perfor-
mance of the proposed edge computing framework under
both decision-making alternatives and models (i.e., game-
theoretic and reinforcement learning-based ones), in
terms of convergence and/or operation efficiency. Further-
more, a comparative evaluation of the proposed frame-
work against other alternative data offloading benchmark-
ing strategies is presented and discussed.

The remainder of the paper is organized as follows. Section
II presents the overall system model and an overview of the
operation of the proposed framework. In Section III, the users’
data offloading problem is formulated and solved based on
a game-theoretic approach. In Section IV, the MEC servers’
optimal computing service pricing policies are determined
based on the game-theoretic and reinforcement learning-based
alternatives. In Section V, simulation and comparative nu-
merical results are illustrated and analyzed, while Section VI
concludes the paper.

II. MULTI-ACCESS EDGE COMPUTING

A. Behavior and Price-aware Modeling

We consider a multi-user multi-server multi-access edge
computing environment, consisting of a set of users N =
{1, . . . , n, . . . , |N |} and a set of MEC servers S =
{1, . . . , s, . . . , |S|}. Each user requests a service that is char-
acterized by a computation task Jn = (bn, in), where bn

[bits] denotes the input bits that need to be processed and in
[CPU Cycles] the computation demand of the user’s service,
expressing the number of necessary CPU Cycles to process the
bn bits. Each user can select one server to offload bMEC

n,s [bits]
amount of data, while the rest of the data, i.e., bn − bMEC

n,s ,
are processed locally on the user’s device. The user’s device
computation capability is denoted as fn [CPU Cycles/sec] and
the consumed energy per CPU Cycle to locally process the
user’s data is γn [J/CPU Cycles]. The total processing time for
each user’s computation task, if it is fully processed locally,
is tn = in

fn
[sec] and the corresponding consumed energy is

en = γnin [J]. Each MEC server charges ps [$/bit] monetary
units per bit of processed data to perform the computing.

The computing capabilities of the MEC servers are assumed
to be shared among the users, thus, they are treated as a
Common Pool of Resources (CPR). Given that the CPR is
excludable, rivalrous, and can be commonly accessible to all
users, the phenomenon of the Tragedy of the Commons may
arise [26]. Thus, the MEC servers may fail to serve the users
due to potential over-exploitation, and no user will enjoy the
computing capabilities of the server that failed. The users
may experience risks in their decision-making process, i.e., to
which server to offload part of their data, which may stem from
either the complete failure or the depletion of the computing
resources, caused by the potential (over)exploitation of the
CPR, i.e., fragility of the shared resources. In our proposed
framework, each user reacts in a personalized risk-aware
manner based on its perception of the MEC servers’ computing
resources’ usage. The majority of the existing literature applies
centralized admission control mechanisms to allow the users
to access the MEC servers’ computing resources. However, it
is well known that a centralized admission control approach
suffers from several drawbacks, e.g., single point of failure,
control and communication overhead, and privacy concerns.
Moreover, it is highlighted that in emerging complex MEC
systems, due to the fact that different MEC servers may be
owned by different service providers, the solution of a central-
ized entity performing admission control and task scheduling
would not be realistic, or even feasible is several cases.

Based on the general principles of Prospect Theory, the
users present different behavior (i.e., utility values), expressed
as satisfaction or dissatisfaction, based on the gains or losses
they experience from a service. Specifically, based on the loss
aversion property, the users experience greater dissatisfaction
in the case of losses compared to the perceived satisfaction
from gains of the same magnitude. The aforementioned gains
and losses are determined with respect to a predefined refer-
ence point Un,0, which in our case is defined as Un,0 = bn

tnen
,

reflecting the user’s satisfaction from processing its computa-
tion tasks on its device. The latter captures the user’s perceived
utility if it processed the whole amount of its data locally.

Therefore, the user’s prospect-theoretic utility by offloading
bMEC
n,s data to a MEC server is defined formally as follows:

Pn,s(Un,s) =

{
(Un,s − Un,0)

αn , if Un,s ≥ Un,0

−kn(Un,0 − Un,s)
βn , otherwise

(1)

where αn, βn ∈ [0, 1], and kn ∈ R+. The risk-aware param-
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eters αn, βn reflect the users’ risk-averse behavior in gains,
and risk-seeking behavior in losses, respectively. Also, the loss
aversion parameter kn captures the way that the user weighs
the losses and gains. Specifically, the user weighs the gains
more than (kn < 1) or equal to (kn = 1) the losses, while
the opposite holds true if kn > 1. In the following analysis,
without loss of generality, we consider that the users’ risk-
aware parameters are equal, i.e., αn = βn,∀n ∈ N . The user’s
actual utility function Un,s(b

MEC
n,s ) captures the user’s actual

satisfaction from: either a) processing all its data locally on its
device (first branch of Eq. 2, or b) offloading part of its data
to a MEC server while the latter one survives (second branch
of Eq. 2), or c) offloading part of its data to a MEC server
while the latter one fails (third branch of Eq. 2). The user’s
actual utility function is defined as follows:

Un,s(b
MEC
s ) =



bn
tnen

, if bMEC
n,s = 0

bn − bMEC
n,s

tnen
+ bMEC

n,s R(Ds)

− cs(b
MEC
n,s )

, if bMEC
n,s ̸= 0

& s survives

bn − bMEC
n,s

tnen
− cs(b

MEC
n,s ), if bMEC

n,s ̸= 0
& s fails

(2)
where bMEC

s denotes the data offloading vector of all the
users, and cs(b

MEC
n,s ) denotes the user’s cost by processing

its data to the MEC server s. The latter is obtained based
on the announced price ps [$] by the MEC server s and
the corresponding normalized amount of its offloaded data.
Therefore, the user’s cost can be formally defined as follows.

cs(b
MEC
n,s ) = psin

bMEC
n,s

bn
(3)

The physical meaning of Eq. 3 is that, as expected, a user
experiences a higher cost from the MEC server either due to a
high computing service price or if it requests a large amount of
data to be processed following the principles of proportional
fairness or if the data are characterized by high computation
demand to be processed at the MEC server. For fairness
purposes among the users, we consider that the MEC server
announces the same price ps for all the users that offload their
computation tasks to it for further processing. Nevertheless
different prices are announced by the different servers to the
users in order to promote competition. Furthermore, the second
branch of Eq. 2 is formulated based on the satisfaction that
a user experiences from offloading part of its data to the
MEC server (first term), while considering the cost that is
charged with to process its data at the server (third term)
and the rate of return R(Ds) that it experiences by having
its data bMEC

n,s processed at the edge (second term). The rate
of return implicitly reflects the value that the user gains from
to the remote execution of its task. In particular, the rate
of return function R(Ds) is assumed to be continuous and
monotonically decreasing with respect to the users’ normalized
effective demand Ds from the server (formally defined below).
Thus, if the users’ normalized effective demand Ds is high,
meaning that the MEC server’s computing capabilities are
over-exploited, the satisfaction that the users experience by

processing their data to the server is decreased due to an
increased data processing delay. For demonstration purposes,
in the following analysis, the MEC servers’ rate of return
function is formulated as follows:

R(Ds) = 2− eDs−1. (4)

The users’ normalized effective demand Ds from the MEC
server s is a sigmoidal function that maps the users’ actual
computing demand ds =

∑|N |
n=1 in

bMEC
n,s

bn
from the MEC

server s to the interval [0, 1] and is a continuous and strictly
increasing function with respect to ds, defined as follows:

Ds(ds) = −1 +
2

1 + e−θsds
. (5)

The parameter θs > 0 is a positive constant which is used
to calibrate the sigmoidal curve to appropriately capture the
MEC servers’ computing capabilities. In a practical implemen-
tation, the value of the normalized effective demand Ds is
broadcasted by the server to the users, providing an indication
of how over-exploited a MEC server is, in order to further
facilitate the users’ distributed decision-making process. Given
the CPR nature of the MEC server’s computing capability,
due to the joint exploitation from multiple users that offload
their data to the same server, the latter one is characterized
by a probability of failure Prs(Ds) depending on the users’
normalized effective demand Ds. The MEC server’s probabil-
ity of failure is a continuous and strictly increasing function
with respect to the users’ demand Ds and can be indicatively
defined as Prs(Ds) = D2

s . It is noted that the latter function
is adopted only for demonstration purposes, while any contin-
uous and strictly increasing probability of failure function can
be adopted without limiting the applicability of the rest of the
analysis.

Based on the previous analysis and discussion, and for
simplicity in the presentation, let us denote as Usurv.

n,s and
Ufail
n,s the second and third branch of Eq. 2, respectively. Then

the user’s prospect-theoretic utility function, as expressed in
Eq. 1, can be rewritten as follows,

Pn,s(b
MEC
n,s ,bMEC

−n,s ) =



P surv.
n,s = (Usurv.

n,s − bn
tnen

)αn ,

if Usurv.
n,s ≥ Un,0

P fail
n,s = −kn( bn

tnen
− Ufail

n,s )αn ,

otherwise

(6)

where bMEC
−n,s denotes the data offloading vector of all the

users except for user n to the MEC server s. One of the
key principles and findings of Prospect Theory, states that
the users tend to overestimate the likelihood of events with
low probability of failure and underweight outcomes with high
probability of failure, i.e., π(Prs) > Prs for small Prs values
and π(Prs) < Prs for large Prs values. This latter observa-
tion of how humans behave under risk-aware decision-making
processes is defined as the probability weighting phenomenon.
The prospect-theoretic probability weighting function π(Prs)
of outcomes with different likelihood to occur is defined as
follows [35]:

π(Prs) = e−(− ln(Pr))γ (7)



IEEE SYSTEMS JOURNAL 5

Figure 1: Overview of the proposed framework

where γ ∈ R+ denotes the psychological distortion parameter.
Considering the aforementioned probabilities, the user’s

expected prospect-theoretic utility function from offloading
part of its data to a selected MEC server is defined below.

E(Pn,s(b
MEC
n,s ,bMEC

−n,s )) = P surv.
n,s (1−π(Prs))+P fail

n,s π(Prs) (8)

Focusing on the MEC servers’ side, each MEC server
announces the price ps for serving the user’s computing
requests, while bearing an operational cost κs [$] to process
the data and support its operation. Each MEC server’s reward
from participating in the MEC environment is defined as

R(ps) = Bs(ps − κs) (9)

where Bs =
∑|N |

n=1 b
MEC
n,s is the total amount of offloaded data

to the MEC server s. Focusing on the network economics-
based operation of a MEC server, we make the following
observations. A MEC server naturally tends to increase its
announced price ps if: i) its operational cost is high, in order
to sustain some profit (ii) it processes a large amount of data,
reaching its maximum capacity BMAX [bits] in terms of data
that can simultaneously process, in order to avoid its over-
exploitation and even failure in the worst case scenario and
iii) the rest of the MEC servers increase their price p−s =
[p1, . . . , ps−1, ps+1, . . . , p|S|], in order to remain competitive
in the edge computing market. Based on these observations
and interdependencies, we define the MEC server’s payoff
function that captures the aforementioned aspects, as follows.

W (ps) = −(ps −
Bs

BMAX
κs

∑
∀j ̸=s pj

ps
)2 (10)

B. Edge Computing Operation

In this section, we provide an overview of the operation
of the proposed behavior and price-aware multi-user multi-
server multi-access edge computing system. We formulate its
operation as a multi-leader multi-follower Stackelberg game,
where the users act as followers, determining their optimal

amount of offloaded data, and the MEC servers behave as
leaders, announcing their optimal price to provide their com-
puting services to the users. An overview of the proposed
framework’s operation is presented in Fig.1.

Initially, the MEC servers select the prices to impose to the
users (e.g., randomly) without any knowledge on the amount
of data that each user is willing to offload. Given the MEC
servers’ prices, the users participate in a non-cooperative game
among them, in order to determine the server with whom
they want to associate with, as well as the optimal amount of
offloaded data. This is done based on the criterion of each user
maximizing its perceived expected prospect-theoretic utility
function, as defined in 8. The latter outcome in turn acts
as input to the MEC servers, who determine the optimal
announced prices to offer their computing services to the
users. It is noted that the optimal prices of the MEC server
are determined with two different alternatives based on the
information availability among the MEC servers, as well as
the methodological learning philosophy adopted to conclude
to the optimal solutions. Specifically, a semi-autonomous
game-theoretic model and a fully-autonomous reinforcement
learning-based model are introduced and their drawbacks and
benefits are discussed and demonstrated in a comparative
manner. The interaction among the users and MEC servers
is repeated iteratively until the overall system converges to
a Stackeblerg equilibrium, where the users’ data offloading
strategies and the MEC servers’ prices have converged to the
optimal values.

III. OPTIMAL DATA OFFLOADING

A. Problem Formulation

In this section, the problem of determining the MEC servers’
selection by the users and the optimal data offloading strategies
is formulated as a distributed optimization problem. Each
user aims at selecting the MEC server that will eventually
maximize the user’s expected prospect-theoretic utility, while
in parallel determining the optimal data offloading strategy.
Thus, in our proposed framework, the association problem
between users and MEC servers is jointly treated with the data
offloading problem. The corresponding optimization problem
is formulated as follows.

max
∀s∈S

{max
bMEC
n,s

E(Pn,s(b
MEC
n,s ,bMEC

−n,s ))},

s.t. 0 ≤ bMEC
n,s ≤ bn

(11)

Thus, a user selects the MEC server that maximizes the
maximum potential expected prospect-theoretic utility. To-
wards determining the latter value, the nested optimization
problem should be addressed as follows:

max
bMEC
n,s ∈[0,bn]

E(Pn,s(b
MEC
n,s ,bMEC

−n,s )). (12)

The optimization problem in Eq. 12 can be addressed
as a non-cooperative game among the users, who com-
pete among each other about the MEC server’s computing
resources. The non-cooperative game is defined as G =
[N, {Bn}∀n∈N , {E(Pn,s)∀n∈N}], where N is the set of users,
Bn = [0, bn] is each user’s strategy set, and E(Pn,s) is the
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user’s expected prospect-theoretic utility function. Our goal is
to determine a Nash Equilibrium (NE) point, where the users
have converged to their optimal data offloading strategies.

Definition 1 (Nash Equilibrium). A data offloading vector
b∗ = (bMEC∗

1,s , . . . , bMEC∗
n,s , . . . , bMEC∗

|N |,s ),∀s ∈ S is a Nash
Equilibrium if the following condition holds true for every
user n ∈ N, ∀s ∈ S, ∀bMEC

n,s ∈ Bn:

E(Pn,s(b
MEC∗
n,s ,bMEC∗

−n,s )) ≥ E(Pn,s(b
MEC
n,s ,bMEC∗

−n,s )) (13)

B. Problem Solution

Towards determining the existence of a Nash Equilibrium
of the non-cooperative game G, we show that the game is
submodular.

Definition 2 (Submodular Games). The non-cooperative game
G = [N, {Bn}∀n∈N , {E(Pn,s)∀n∈N}] is submodular if the
following conditions hold true for all users:

1) Bn,∀n ∈ N is a compact subset of an Euclidean space,
2) E(Pn,s),∀n ∈ N, ∀s ∈ S is smooth, submodu-

lar in bMEC
n,s and has non-increasing differences in

(bMEC
n,s ,bMEC

−n,s ), i.e., ∂2E(Pn,s)

∂bMEC
n,s ∂bMEC

n′,s
≤ 0.

Theorem 1. The non-cooperative game G =
[N, {Bn}∀n∈N , {E(Pn,s)∀n∈N}] is submodular and has
at least one Nash Equilibrium point.

Proof: The proof can be concluded following similar
reasoning and steps as in [25]. For additional theoretical details
the interested reader may also refer to [36] and [37].

Based on Theorem 1, the existence of at least one Nash
Equilibrium point is shown. Thus, each user can determine its
optimal amount of offloaded data bMEC∗

n,s to a MEC server s
and select the MEC server s that maximizes its maximum
expected prospect-theoretic utility, as expressed in Eq. 11.
The Nash Equilibrium point can be practically determined by
following a Best Response Dynamics algorithm [25].

IV. COMPUTING SERVICE PRICING

In this section our goal is to determine the optimal an-
nounced prices by the MEC servers given the users’ optimal
data offloading strategies bMEC∗

n,s ,∀n ∈ N, s ∈ S. Please
recall that these prices are utilized by the process described in
Section III to determine the users’ optimal data offloading,
in an overall iterative manner. As defined in Eq. 10, each
MEC server aims at maximizing its payoff, and therefore, the
optimization problem can be defined accordingly as follows.

max
{ps}∀s∈S

W (ps) = −(ps −
Bs

BMAX
κs

∑
∀j ̸=s pj

ps
)2 (14)

The above optimization problem can be treated and solved
in principle based on standard convex optimization techniques,
given that the payoff function W (ps) is concave with respect
to the price ps. However, such an approach would not be
realistic in a real-life implementation, as a centralized entity
should perform the optimization and inform the MEC servers
about their optimal prices. Several reasons however would
render such an approach either infeasible or prohibitive in

practice. Indicatively we refer to the fact that MEC servers may
be owned by different providers, the centralized entity making
the decisions is a single point of failure, while significant
signaling overhead would be imposed to the MEC servers to
interact with the centralized entity. Thus, the need of devising
an autonomous decision-making approach for the MEC servers
arises. In the following subsections, we particularly focus on
this problem and present two strategies to determine each
MEC server’s optimal announced price: a semi-autonomous
game-theoretic approach which has the objective of directly
treating the problem in Eq. 14, and a fully-autonomous alter-
native approach of concluding to the optimal price, based on
reinforcement learning.

A. A Game-Theoretic Approach - Semi-autonomous Decision-
Making

The optimization problem in Eq. 14 can be formulated as
a non-cooperative game G = [S, {Ps}∀s∈S , {W (ps)}∀s∈S ]
among the servers, where Ps = [pmin, pmax] denotes their
strategy set and W (ps) their payoff function. In a realistic
computing market, the minimum pmin and maximum pmax

prices could be set by the market regulations and homo-
geneously applied to all the computing service providers.
Towards showing the existence and uniqueness of a Nash
Equilibrium point, and accordingly determining their optimal
prices p∗s,∀s ∈ S, we follow the theory of n-person concave
games, where n = |S|.

Theorem 2 (Existence and Uniqueness of Nash Equilibrium).
The non-cooperative game G = [S, {Ps}∀s∈S , {W (ps)}∀s∈S ]
is an n-person concave game and admits a unique Nash
Equilibrium point, if the following conditions hold true [38]:

1) the strategy sets P1, . . . , P|S| are non-empty, compact,
convex subsets of finite dimensional Euclidean spaces,

2) all payoff functions W (p1), . . . ,W (p|S|) are continuous
on P = P1 × · · · × P|S|, and

3) every payoff function is concave with respect to ps, if all
other strategies are held fixed.

Proof: By definition, the strategy sets P1, . . . , P|S| are
non-empty, compact and convex, and the payoff function
W (ps) of each server is continuous on ps. Also, it holds true

that ∂2W (ps)
∂p2

s
= −2−6

( Bs
BMAX

∑
∀j ̸=s pj)

2

p4
s

< 0, thus, the payoff
function of each MEC server is concave with respect to ps.
Therefore, the non-cooperative game G is an n-person concave
game and admits a unique Nash Equilibrium point:

p∗s =

√
Bs

BMAX
κs

∑
∀j ̸=s

pj (15)

The Nash Equilibrium point in Eq. 15 can be determined
by implementing a Best Response Dynamics algorithm. Based
on Eq. 15, it is observed that each MEC server needs to
be aware of the summation of the prices of all the rest of
the MEC servers existing in the examined edge computing
environment. In practice, the overall summation of the MEC
servers’ prices can be broadcasted by a market regulatory
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entity, which monitors the proper operation of the computing
market, to all the MEC servers/edge computing providers.
However, the final decision of the optimal price is performed
by each MEC server in a distributed manner. Thus, the
proposed game-theoretic approach to determine the servers’
optimal prices is characterized as semi-autonomous. Based
on Theorem 1 and 2, the Stackelberg Equilibrium can be
derived. The complexity of proposed game-theoretic approach
to determine the Stackelberg equilibrium can be readily ob-
tained as O(|N | ∗ |S| ∗ ite1 ∗A), where ite1 is the number of
iterations needed until convergence of the whole Stackelberg
game, and A the complexity of the algorithm solving the
maximization problem of Eq. 12. Detailed results showing
the convergence and complexity to determine the Stackelberg
Equilibrium are presented in Section V-A. Towards realizing
a fully-autonomous decision-making approach for the MEC
servers’ optimal announced prices and alleviating the need
for designing specific utility functions as required in the
game-theoretic approaches, a reinforcement learning model is
introduced in the following.

B. A Reinforcement Learning Approach - Fully-autonomous
Decision-Making

The proposed reinforcement learning-based model aims to
generate the highest profit for the servers without requiring
any knowledge on how their choice affects the amount of
data offloaded to them or the pricing of the other servers;
the decisions are achieved by simply observing the effects
that each server’s actions have on its own profit. Towards
achieving this goal, we model the decision-making problem as
a Multi-Armed Bandit problem [39], that focuses on solving
the exploration - exploitation dilemma of a learner (server s)
willing to find the best action (price ps) that maximizes his
perceived reward R(ps). It should be noted that the Multi-
Armed Bandit is a special case of the Markov Decision Process
(MDP) in which there is only one state, a set of actions,
i.e., prices, and a reward gained by selecting an action (Eq.
9). Thus, the Multi-Armed Bandit is considered as stateless
[40], or equivalently as an one-state MDP. In the Multi-Armed
Bandit problem, each action provides a random reward from a
probability distribution specific to the action and the MEC
server selects the action that generates the highest reward.
During this process, a balance should be kept among exploiting
the actions that have already been found to perform well and
exploring new actions in order to gather more information on
the expected reward of the rest of the actions.

Initially, we discretize the pricing strategy space Ps =
[pmin, pmax] in distinct actions within a range of a minimum
and a maximum price, thus having a set A of M actions
A = {a1, . . . , am, . . . , aM} where am ∈ [pmin, pmax]. Each
server chooses at each timeslot a pricing action from the action
set A based on which the users play their data offloading
game. Thus, at the end of the timeslot the servers observe
the obtained reward according to Eq. 9, and can decide on the
pricing action of the next timeslot.

In order to solve the Multi-armed Bandit problem, we adopt
the Upper Confidence Bound algorithm (UCB1) [41] that

has been proven to have a bounded regret. The regret [42]
measures the efficiency of the algorithm and corresponds to
the difference between the cumulative reward of the proposed
action and that of the best possible action. Apart from the
regret guarantees, the proposed algorithm allows to fine-
tune the range of the confidence interval and enables for
better exploration by the MEC servers, which increases the
probability of choosing less explored actions.

The main idea of the Upper Confidence Bound algorithm is
that the MEC server keeps a record of the average reward that
it obtains, via selecting each action, as well as a confidence
interval based on the total number of times the action was
selected. Then, instead of choosing the action with the best
average reward, it chooses the action with the best upper bound
of the interval, meaning that it chooses the action with the best
potential. Specifically, the MEC server chooses the action that
maximizes the following score:

scoream = x̄am +

√
2 ln(nam

)

t
(16)

where am is the action, x̄am is the average reward experienced
by the MEC server for the action am, nam is the number of
times that the action am has been chosen and t is the total
number of iterations of the algorithm. Similarly as before, the
complexity of our proposed approach is O(|N |∗|S|∗ite2∗A),
where ite2 is the number of iterations of just the users’ game
(see Section III-B). It should be finally clarified, that in general
the multi-agent reinforcement learning is a very complex case
and therefore in our work we considered a heuristic approach
where each agent separately tries to solve its own multi-armed
bandit problem independently from the others. The choices
of the rest of the agents are implicitly hidden within the
randomness of the perceived reward.

V. PERFORMANCE EVALUATION

In this section, the performance evaluation of the proposed
optimization and decision-making framework is realized via
modeling and simulation. Initially, we demonstrate the per-
formance of the proposed framework, considering the semi-
autonomous game-theoretic model to determine the MEC
servers’ optimal prices (Section V-A). Subsequently, in Section
V-B, the evaluation is extended to demonstrate the operation
and tradeoffs of the adoption of a fully-autonomous decision-
making approach in determining the MEC servers’ prices. The
impact of the users’ behavioral characteristics on the offload-
ing strategies and the system performance is studied in Section
V-C. Finally, Section V-D presents a comparative evaluation
of the proposed framework against baseline alternatives to
demonstrate its operational superiority and efficiency.

The default system and users’ parameters utilized in the
following performance evaluation, unless otherwise explicitly
stated, are as follows. The total number of users and servers in
the examined multi-access edge computing environment is set
to |N | = 50 and |S| = 4, respectively. The users’ amount of
input bits bn, the computation demand of the users’ applica-
tions in, the computation capability of the users’ devices fn,
and the users’ local consumed energy per CPU Cycle follow
uniform distributions with mean 107 bits, 8∗109 CPU Cycles,
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(a) Data offloaded by each user to each server (b) Total amount of offloaded data per server (c) No. of users associated with each server

(d) Probability of Failure of each server (e) Optimal announced price by each server (f) Reward experienced by each server

Figure 2: Pure operation performance under the semi-autonomous game-theoretic decision-making approach.

6 ∗ 109 CPU Cycles/sec, and 4 ∗ 10−9 Joule/CPU Cycles,
respectively. Furthermore, for demonstration only purposes,
the MEC servers’ operational cost is κ = [1, 3, 5, 3] ∗ 10−3

$/bit, while the users’ behavioral characteristics are captured
by the risk-aware parameter an = 0.2, the loss aversion
parameter kn = 1.2, and the distortion parameter γ = 0.6.

A. Pure Operation Performance Evaluation under the Semi-
autonomous Game-theoretic Decision-making Model

In this section, we present the pure operation and per-
formance of the proposed framework, considering the semi-
autonomous game-theoretic decision-making of the MEC
servers’ optimal prices. Initially, we present the evolution of
several system parameters of interest as a function of the re-
quired iterations for convergence to a stable solution, including
both the decision-making parameters under consideration here,
namely the average user offloaded data and the MEC server
prices. In particular, Fig.2a - Fig. 2f present each user’s amount
of offloaded data, the total amount of offloaded data per server,
the total number of users associated with each server, the
servers’ probability of failure, the optimal announced prices,
and the servers’ reward (Eq. 9), respectively, as a function
of the Stackelberg game’s iterations. First, we note that the
results clearly demonstrate that the overall proposed behavior
and price-aware edge computing framework converges quite
fast to the Stackelberg equilibrium, i.e., users’ optimal data
offloading strategies (Fig.2a) and MEC servers’ optimal prices
(Fig.2e), as for practical purposes less than 40 iterations are
needed (corresponding approximately to less than 5 seconds
in simulation time). It is observed that the MEC servers with
lower operational cost (κ1 < κ2 = κ4 < κ3), announce a

lower price (Fig.2e), thus attracting a larger number of users
(Fig.2c) which in turn offload an overall larger amount of
data (Fig.2b). However, this strategic decision by some of
the MEC servers results in a higher probability of failure
(Fig.2d), showing that these servers struggle to process the
users’ offloaded data. Those servers which are characterized by
low operational cost and announce a low price to attract a large
portion of the users’ computing demand, result in experiencing
low reward (Fig.2f). On the other hand, the servers, with
intermediate operational cost announce a conservative price,
enjoying a greater reward, even if they process a comparatively
intermediate amount of data (Fig.2b).

B. A Fully-Autonomous Decision-Making Reinforcement
Learning Model

In this section, we extend our previous analysis and eval-
uation considering that the MEC servers decide their optimal
prices without the need of explicitly receiving any external
information. Instead they perform exploration and exploitation
based on the reinforcement learning model presented in Sec-
tion IV-B, towards determining the optimal prices. Based on
the insight we gained from the results obtained in Section V-B,
for implementation and demonstration purposes, we bound the
MEC servers’ strategy space as Ps = [10−3, 3 ∗ 10−3] and we
equally quantize it in 15 possible actions. Please note that
in the following for better understanding and comprehending
the operation and achieved system performance by the pro-
posed reinforcement learning model, the results are discussed,
wherever possible, in comparison with the corresponding ones
achieved by the semi-autonomous game-theoretic model.

Specifically, in Fig.3a we present the MEC servers’ optimal
announced prices for the overall execution period of the
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Figure 3: MEC servers prices and rewards based on a fully-autonomous reinforcement learning model.

reinforcement learning algorithm as a function of the corre-
sponding iterations, while in Fig.3c the corresponding MEC
servers’ reward is also presented. To gain some more insight
about the algorithm operation and convergence, in Fig.3b the
evolution of the the MEC servers’ optimal prices during the
last 1000 iterations is highlighted. The results demonstrate
that initially the MEC servers explore several prices to be
announced to the users (Fig.3a) as shown by the high price
variations in consecutive iterations, but as the reinforcement
learning algorithm thoroughly explores the potential pricing
strategies, it finally concludes and converges towards an opti-
mal announced price with very limited exploration (Fig.3b).

Also, it is observed that the fully-autonomous decision-
making model follows the same trend regarding the MEC
servers’ announced prices, i.e., p1 < p2 = p4 < p3 (Fig.3b),
as the semi-autonomous game-theoretic model (Fig.2e). How-
ever, the servers with lower operational cost learn better the
characteristics of the edge computing environment, and better
account for the total amount of processed data (Fig.2b), thus,
they announce a higher price (i.e., p1) in the fully-autonomous
reinforcement learning decision-making model (Fig.3b vs. the
corresponding prices obtained in the semi-autonomous game-
theoretic model Fig.2e). Thus, the MEC servers with lower
operational cost eventually achieve to enjoy a higher reward
(Fig.3c) in contrast to the results obtained by the semi-
autonomous game-theoretic decision-making model.

The above obtained results conclude to the following fun-
damental and interesting observations regarding the fully-
autonomous reinforcement learning (RL) and the semi-
autonomous game-theoretic (GT) decision-making models.
Both of them result in similar benefits regarding the users’
computing requests’ satisfaction, their corresponding achieved
utility, and their optimal data offloading strategies. On the
other hand, the RL-based model supports better the free market
competition among the MEC servers, which autonomously
learn and decide the optimal announced prices, without the
need for the involvement of a (centralized) market regulatory
entity. In this case, the MEC servers operate in a myopic and
selfish manner resulting in higher achieved rewards, even for
the servers that announce lower prices. On the other hand,
the GT-based decision-making model concludes faster to the
users’ optimal data offloading strategies and the MEC servers’
optimal announced prices, compared to the RL-based model.

C. Impact of Users’ Behavioral Characteristics

In this section, we study the impact of the users’ behavioral
characteristics, as they are captured by the risk-aware param-
eter αn and the loss aversion parameter kn, on the overall

Figure 4: Offloading strategies and system performance vs.
risk-aware parameter αn

Figure 5: Offloading strategies and system performance vs.
loss aversion parameter kn

system’s operation. Concerning the different values of the risk-
aware parameter αn, Fig.4 shows that the higher the value of
αn is, the higher is the amount of data that the user offloads.
By increasing αn, the sensitivity on gains as well as on losses
increases exponentially based on Eq.6. Also, given that the
amount of offloaded data increases, the probability of failure
increases as well. However, still the MEC servers are more
likely to succeed in fulfilling their tasks, thus, making the first
branch of Eq. 6 more likely to occur. As a result, increasing
the exponent αn results in higher expected utility for the users
based on Eq. 8. In turn, due to the users’ higher willingness
to offload data, the servers have the flexibility to announce
higher prices, which in combination with the larger volume of
the offloaded data, leads to higher rewards for the servers.

On the other hand, increasing the loss aversion parameter
kn, which expresses how the users weigh the losses, has the
opposite effect. As kn increases, Fig.5 shows that the users
tend to offload less data in order to reduce their potential
losses. It is noted that the gains experienced by the users are
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Figure 6: System performance vs. offloaded data.

not affected by the parameter kn as we can see from Eq. 6.
Also, we observe that the users’ expected utility decreases by
a smaller amount as compared to the corresponding changes
in the risk-aware parameter αn, due to the linear dependence
of the utility function on the parameter kn. Also, the MEC
servers’ probability of failure maintain relatively low values,
signifying that losses eventually play a less important role in
the resulting expected utility. Due to the decreasing amount
of offloaded data, the servers aim at incentivizing the users
to offload more data by announcing lower prices to the users,
leading to an overall decreased reward for the servers.

Moreover, in the following Fig. 6 we present the tradeoffs
between different system performance metrics while forcing
the users to offload specific portions of their data. Specifically,
by keeping all the users’ data locally for processing, the users
experience zero utility, since the local processing depicts the
reference point of the prospect-theoretic utility function (Eq.
6). Consequently, since no data are offloaded, the MEC servers
announced price and their probability of failure remain zero.
In the scenario that very few data are offloaded, the servers
impose low prices since they want to incentivize users to
offload more data, resulting in low rewards. On the other hand,
the users still experience high utility, given the fact that the
server is guaranteed to succeed in executing their tasks due to
the low probability of failure. However, when the percentage
of offloaded data exceeds a threshold (e.g., 20% of the users’
data in our case), the users tend to experience lower utility.
This phenomenon is observed due to the fact that even if
the users offload more data and enjoy the servers’ computing
capabilities, the servers ultimately increase their prices to
compensate for their offered computing resources. The above
threshold depends on the users’ behavioral characteristics, as
well as on the servers’ computing capabilities and market
competition. Additionally, due to the increased exploitation
of the MEC servers’ computing resources, the probability of
failure increases, leading to further decrease in the users’
expected utility.

D. Comparative Evaluation

Subsequently, we present a detailed comparative evalua-
tion of the proposed framework - under the two operational
alternatives and models - against four different benchmark-
ing scenarios, with respect to determining the optimal MEC
server’s prices. In particular, we compare the proposed fully-

autonomous reinforcement learning (RL) model and the semi-
autonomous game-theoretic (GT) one, against the following
strategies: i) RL-AVG, where the MEC servers constantly
announce the average prices that the RL model has learned
over 30, 000 iterations, ii) MAX, iii) MIN, and iv) RANDOM,
where the MEC servers always announce a maximum, mini-
mum, and random price to the users, respectively.

Fig.7a - Fig.7b demonstrate the cumulative MEC servers’
rewards (Eq. 9) over the iterations of the reinforcement
learning model, over two different scenarios corresponding
to 100 and 30000 iterations, respectively. The results reveal
that the MAX scenario, as expected, constantly presents the
worst rewards for the MEC servers, as their computing services
become extremely expensive for the users, and the latter ones
prefer to locally process their data on their devices. On the
other hand, the RL-AVG scenario constantly achieves the best
rewards for the MEC servers, as they always announce the
educated optimal prices that the RL-model has chosen. The
MIN and RANDOM scenarios on the other hand, present
worse results than the GT and the RL models, in particular
after the point that the latter one has performed sufficient
exploration (Fig.7b) of the available pricing strategies. Thus,
even if the MEC servers set a low price to attract more
users (MIN scenario), this decision results in worse rewards
compared to the optimal decision-making performed by the
GT and RL scenarios, due to the combined effect of the low
price and the phenomenon of the Tragedy of the Commons
which results in the over-exploitation of the MEC servers’
computing resources.

Placing our emphasis on the GT and RL scenarios, we
observe that the GT model achieves fast a stable optimal
outcome (Figs. 7), while the RL model progressively explores
the MEC servers’ strategy space and eventually results in
similar, and even slightly better rewards for the MEC servers.
Moreover, Fig. 7c comes as a verification to the above argu-
ment and observation, since even though initially the RL leads
to greater regret for the servers compared to the GT approach,
after approximately 12, 000 iterations this trends reverses and
the RL approach leads to lower and diminishing regret, thus
becoming more favorable in the long run. Please recall that
the regret as it has been defined in Section IV-B, represents
the difference between the cumulative profit that the servers
would have obtained if they had been playing the best pricing
strategy from the beginning (which in practice is unknown and
is only theoretical) - here is the RL-AVG strategy - and the
cumulative profit that the servers actually receive until iteration
i under the corresponding strategy. The latter observation is
well aligned with the findings in Section V-B, where it was
concluded that the RL model benefits more the MEC servers,
presenting superior rewards compared to the GT model, while
guaranteeing similar performance for the users.

Finally, in Fig. 8 we present a comprehensive evaluation
of various system performance metrics for all the different
considered alternative strategies, in order to better validate
the relative efficiency and effectiveness of our proposed ap-
proaches, in a more holistic manner. Specifically, we observe
that both GT and the RL approaches outperform all the
alternative baseline methods in balancing the rewards for
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Figure 7: Cumulative reward of servers – Comparative Evaluation.

Figure 8: System Performance for various pricing mechanisms

both users and servers. For instance, selecting the RANDOM
approach may result in lower probability of failure for the
servers as less data are offloaded to them, however relatively
poor performance is observed with respect to the rest of the
metrics, noting that both users’ utility and offloading data (Fig.
8) and servers’ profit (Fig. 7) remain low. On the other hand,
by setting a constant pricing equal to the minimum one (i.e.,
MIN), users offload more data to the servers thus achieving
greater utility, however this happens at the cost of reduced
reward for the servers (Fig. 7). On the opposite side, setting
a constant pricing equal to the maximum price (i.e., MAX)
forces users to keep all their data for local execution, thus
resulting in almost zero probability of failure, but extremely
low reward for the users.

Turning our attention to the GT approach, from the results in
Fig. 8 we notice that it presents a final solution more beneficial
for the users, since the corresponding game converges to a
stable outcome with lower average price than its counterpart
of the RL approach. This in turn allows the offloading of
a greater amount of data to the servers, and consequently
results in higher perceived expected utility by the users. On
the other hand, the RL approach presents a behavior that
favours the servers perspective. That is, though the higher
concluding price leads to lower offloaded data and expected
utility, it still allows for higher profit for the servers (Fig.7c). It
should also be noted that the RL approach, as expected, closely
follows the performance of the constant price of the average
Reinforcement Learning pricing, which strengthens our case
and arguments regarding obtaining low regret values for the
respective servers’ choices.

VI. CONCLUDING REMARKS

In this paper, we proposed a behavior and price-aware
multi-user multi-server multi-access edge computing opera-
tion framework, conceptualized and realized based on the

principles of Prospect Theory, Game Theory, and Reinforce-
ment Learning. The users’ behavior on the one hand, and
the potential servers’ computing resource usage and over-
exploitation on the other hand, are captured via appropriately
designed prospect-theoretic utility functions and the theory
of the Tragedy of the Commons, respectively. The interac-
tions among the users and the MEC servers are captured
via a Stackelberg game. A non-cooperative game among the
users is introduced to determine their optimal data offloading
strategies to the MEC servers, while a game-theoretic and a
reinforcement learning model are proposed, in order to enable
the MEC servers to determine their optimal announced prices
in a semi and fully-autonomous manner, respectively. The
performance evaluation of the proposed framework is obtained
via modeling and simulation, while its superiority against other
basic benchmarking alternatives is demonstrated.

Part of our current and future work targets at extending
the proposed framework via considering the edge computing
market dynamics following a more holistic labor economics
based approach. A dynamic and personalized pricing mecha-
nism where the actual price depends on the capabilities of the
user in order to favor less powerful devices, may promote fair
usage of the network resources and provide greater control
over the proposed framework. It is also noted that in the
current work we focused on the introduction of a commu-
nication agnostic data offloading framework, in order to better
evaluate the impact of the users behavioral characteristics and
the MEC servers pricing policies on the resulting strategies.
However the incorporation of communication considerations
(e.g., interference and/or achievable transmission rate) in the
overall proposed framework is of high practical importance.
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APPENDIX A
PROOF OF THEOREM 1

Towards proving that the game G has at least one Nash
Equilibrium, we can show that the game G is submodular by
proving the properties in Definition 2 [36]. Since the strategy
space of the game Bn = [0, bn] is closed and bounded,
Bn,∀n ∈ N is a compact subset of the Euclidean space.
Additionally, the prospect-theoretic utility function in Eq. 8
is by definition smooth since we can calculate its derivatives
of any order in Bn.

By using Eq. 2-6, we can rewrite Eq. 8 as:

E(Pn,s(b
MEC
s )) =(bMEC

n,s )αn{R(Ds)(1− π(Prs))

− kn(
1

tnen
+ ps

in
bn

)αnπ(Prs)}
(A.1)

where we substitute R(Ds) = [R(Ds) − 1
tnen

− ps
in
bn
]αn

for notation purposes. The R(Ds) corresponds to the users’
specific rate of return which in our work should be by
definition positive so that the users have incentive to offload
their data to the MEC servers.

Towards determining the minimum value of R(Ds), we
observe based on Eq. 4 that the function R(Ds) is decreasing
with respect to Ds and thus its minimum value corresponds to
Ds = 1. In order to guarantee that the users have the incentive
to offload their data to the MEC server he have the following:

R(Ds = 1) > 0 ⇒ ps <
bn
in

(1− 1

tnen
) (A.2)

providing a boundary on the price that the servers can
impose before the users choose a priori to locally process
all their data. Also, we have: ∂Ds

∂bMEC
n,s

> 0, ∂Ds

∂bMEC
j,s

>

0, ∂R(Ds)
∂bMEC

n,s
< 0, ∂R(Ds)

∂bMEC
j,s

< 0, ∂2R(Ds)

∂bMEC
j.s ∂bMEC

n.s
< 0, ∂Prs(Ds)

∂bMEC
n,s

>

0, ∂Prs(Ds)

∂bMEC
j,s

> 0, ∂2Prs(Ds)

∂bMEC
n,s ∂bMEC

j,s
= 0, ∂π(Prs)

∂bMEC
n,s

> 0, ∂π(Prs)

∂bMEC
j,s

>

0, ∂2π(Prs)

∂bMEC
n,s ∂bMEC

j,s
= 0, when γ ∈ (0, 1). Additionally,

and for notation purposes, we set A = kn(
1

tnen
+

ps
in
bn
)αn > 0, and thus Eq. A.1 becomes: E(Pn(b

MEC
s )) =

(bMEC
n,s )αn{R(Ds)(1− π(Prs))−Aπ(Prs)}. Then, we pro-

ceed in calculating the second-order partial derivative of the
user’s expected prospect-theoretic utility function:

∂2E(Pn(b
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and by setting ψ(Ds) = ∂R(Ds)

∂bMEC
j,s

[αn − αnπ(Prs) −
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n,s

∂π(Prs)
∂bMEC
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, we can rewrite Eq.
A.3, as follows.

∂2E(Pn(b
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(A.4)
The compact form of Eq. A.4 allows us to extract meaning-

ful information regarding the sign of the resulting equation.
Since the last three terms are negative based on the aforemen-
tioned derivatives, in order to study the equation we can focus
on the first term, ψ(Ds). Specifically, we can examine the two
cases where Ds = 0 and Ds ≈ 1 to study the properties of
the function ψ(Ds).

For Ds = 0, we have:

ψ(0) =
∂R(0)

∂bMEC
j,s

αn < 0 (A.5)

while for Ds ≈ 1, we have:

ψ(Ds ≈ 1) = −bMEC
n,s [

∂R(1)

∂bMEC
j,s

∂π(Prs(1))

∂bMEC
n,s

+
∂R(1)

∂bMEC
n,s

∂π(Prs(1))

∂bMEC
j,s

] > 0

(A.6)
Following the Bolzano Theorem [37], since ψ(Ds) is a

continuous function on Ds, there exists at least one value
x ∈ (0, 1) such that ψ(x) = 0. We have already shown that
ψ(0) < 0 and thus if x is the smallest value in (0, 1) where
ψ(x) = 0, that means that ψ(Ds) < 0,∀Ds ∈ (0, x).

Continuing on Eq. A.4, we have proven that:

∂2E(Pn(b
MEC
n ))

∂bMEC
j,s ∂bMEC

n,s

< 0,∀Ds ∈ (0, x), x ∈ (0, 1) (A.7)

Based on the above, we can conclude that the non-
cooperative game G is submodular ∀Ds ∈ (0, x) given that
ps <

bn
dn

(1 − 1
tnen

) and γ ∈ (0, 1) and thus that the game G
has at least one Pure Nash Equilibrium point.


